{ "id": "1503.04153", "version": "v1", "published": "2015-03-13T17:19:59.000Z", "updated": "2015-03-13T17:19:59.000Z", "title": "Arnold diffusion in nearly integrable Hamiltonian systems of arbitrary degrees of freedom", "authors": [ "Chong-Qing Cheng", "Jinxin Xue" ], "comment": "109 pages, 10 figures. Comments welcome!", "categories": [ "math.DS" ], "abstract": "In this paper, as a continuation of \\cite{Ch12}, Arnold diffusion is proved to be a generic phenomenon in nearly integrable convex Hamiltonian systems with arbitrarily many degrees of freedom: $$ H(x,y)=h(y)+\\eps P(x,y), \\qquad x\\in\\mathbb{T}^n,\\ y\\in\\mathbb{R}^n,\\quad n\\geq 3. $$ Under typical perturbation $\\eps P$, the system admits \"connecting\" orbit that passes through any finitely many prescribed small balls in the same energy level $H^{-1}(E)$ provided $E>\\min h$.", "revisions": [ { "version": "v1", "updated": "2015-03-13T17:19:59.000Z" } ], "analyses": { "keywords": [ "integrable hamiltonian systems", "arnold diffusion", "arbitrary degrees", "integrable convex hamiltonian systems", "system admits" ], "note": { "typesetting": "TeX", "pages": 109, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150304153C" } } }