{ "id": "1503.04064", "version": "v1", "published": "2015-03-13T13:45:22.000Z", "updated": "2015-03-13T13:45:22.000Z", "title": "From Derrida's random energy model to branching random walks: from 1 to 3", "authors": [ "Nicola Kistler", "Marius A. Schmidt" ], "comment": "12 pages, 1 figure", "categories": [ "math.PR" ], "abstract": "We study the extremes of a class of Gaussian fields with in-built hierarchical structure. The number of scales in the underlying trees depends on a parameter alpha in [0,1]: choosing alpha=0 yields the random energy model by Derrida (REM), whereas alpha=1 corresponds to the branching random walk (BRW). When the parameter alpha increases, the level of the maximum of the field decreases smoothly from the REM- to the BRW-value. However, as long as alpha<1 strictly, the limiting extremal process is always Poissonian.", "revisions": [ { "version": "v1", "updated": "2015-03-13T13:45:22.000Z" } ], "analyses": { "subjects": [ "60J80", "82B44", "60G70" ], "keywords": [ "derridas random energy model", "branching random walk", "parameter alpha increases", "in-built hierarchical structure", "limiting extremal process" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }