{ "id": "1503.03533", "version": "v1", "published": "2015-03-11T23:18:52.000Z", "updated": "2015-03-11T23:18:52.000Z", "title": "Mesoscopic linear statistics of Wigner matrices", "authors": [ "A. Lodhia", "N. J. Simm" ], "comment": "32 pages", "categories": [ "math.PR" ], "abstract": "We study linear spectral statistics of $N \\times N$ Wigner random matrices $\\mathcal{H}$ on mesoscopic scales. Under mild assumptions on the matrix entries of $\\mathcal{H}$, we prove that after centering and normalizing, the trace of the resolvent $\\mathrm{Tr}(\\mathcal{H}-z)^{-1}$ converges to a stationary Gaussian process as $N \\to \\infty$ on scales $N^{-1/3} \\ll \\mathrm{Im}(z) \\ll 1$ and explicitly compute the covariance structure. The limit process is related to certain regularizations of fractional Brownian motion and logarithmically correlated fields appearing in \\cite{FKS13}. Finally, we extend our results to general mesoscopic linear statistics and prove that the limiting covariance is given by the $H^{1/2}$-norm of the test functions.", "revisions": [ { "version": "v1", "updated": "2015-03-11T23:18:52.000Z" } ], "analyses": { "subjects": [ "60B20" ], "keywords": [ "wigner matrices", "general mesoscopic linear statistics", "study linear spectral statistics", "wigner random matrices", "stationary gaussian process" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }