{ "id": "1503.03521", "version": "v1", "published": "2015-03-11T22:12:01.000Z", "updated": "2015-03-11T22:12:01.000Z", "title": "Cartan subalgebras in C*-algebras of Hausdorff étale groupoids", "authors": [ "Jonathan H. Brown", "Gabriel Nagy", "Sarah Reznikoff", "Aidan Sims", "Dana P. Williams" ], "comment": "14 pages", "categories": [ "math.OA" ], "abstract": "The reduced C*-algebra of the interior of the isotropy in any Hausdorff \\'etale groupoid G embeds as a C*-subalgebra of the reduced C*-algebra of G. We prove that any representation of the reduced algebra of G that is injective on this subalgebra is faithful. We also show that restriction of functions extends to a faithful conditional expectation of the reduced C*-algebra of G onto the embedded subalgebra, and the set of pure states of the subalgebra with unique extension to the larger C*-algebra is dense. If the interior of the isotropy is abelian, then the embedded subalgebra is a Cartan subalgebra in the sense of Renault.", "revisions": [ { "version": "v1", "updated": "2015-03-11T22:12:01.000Z" } ], "analyses": { "subjects": [ "46L05" ], "keywords": [ "cartan subalgebra", "hausdorff etale groupoid", "embedded subalgebra", "faithful conditional expectation", "pure states" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150303521B" } } }