{ "id": "1503.03385", "version": "v1", "published": "2015-03-11T15:46:58.000Z", "updated": "2015-03-11T15:46:58.000Z", "title": "Quadro-quadric special birational transformations from projective spaces to smooth complete intersections", "authors": [ "Qifeng Li" ], "categories": [ "math.AG" ], "abstract": "Let \\phi: \\mathbb{P}^{r}\\dashrightarrow Z be a birational transformation with a smooth connected base locus scheme, where Z\\subseteq\\mathbb{P}^{r+c} is a nondegenerate prime Fano manifold. We call \\phi a quadro-quadric special briational transformation if \\phi and \\phi^{-1} are defined by linear subsystems of |\\mathcal{O}_{\\mathbb{P}^{r}}(2)| and |\\mathcal{O}_{Z}(2)| respectively. In this paper we classify quadro-quadric special birational transformations in the cases where either (i) Z is a complete intersection and the base locus scheme of \\phi^{-1} is smooth, or (ii) Z is a hypersurface.", "revisions": [ { "version": "v1", "updated": "2015-03-11T15:46:58.000Z" } ], "analyses": { "keywords": [ "smooth complete intersections", "projective spaces", "smooth connected base locus scheme", "classify quadro-quadric special birational transformations" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }