{ "id": "1503.03119", "version": "v1", "published": "2015-03-10T23:03:20.000Z", "updated": "2015-03-10T23:03:20.000Z", "title": "Distribution of the values of the derivative of the Dirichlet $L$-functions at its $a$-points", "authors": [ "Mohamed Taïb Jakhlouti", "Kamel Mazhouda" ], "comment": "24 pages", "categories": [ "math.NT" ], "abstract": "In this paper, we study the value distribution of the Dirichlet $L$-function derivative $L'(s,\\chi)$ at the $a$-points $\\rho_{a,\\chi}=\\beta_{a,\\chi}+i\\gamma_{a,\\chi}$ of $L(s,\\chi).$ Actually, we give an asymptotic formula for the sum $$\\sum_{\\rho_{a,\\chi};\\ 0<\\gamma_{a,\\chi}\\leq T}L'(\\rho_{a,\\chi},\\chi) X^{\\rho_{a,\\chi}}\\ \\ \\hbox{as}\\ \\ T\\longrightarrow \\infty,$$ where $X$ is a fixed positive number and $\\chi$ is a primitive character $\\mod q$. This work continues the investigations of Fujii \\cite{2,3,4}, Garunk$\\check{s}$tis & Steuding \\cite{7} and the authors \\cite{12}.", "revisions": [ { "version": "v1", "updated": "2015-03-10T23:03:20.000Z" } ], "analyses": { "keywords": [ "derivative", "value distribution", "asymptotic formula", "work continues", "positive number" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }