{ "id": "1503.02849", "version": "v1", "published": "2015-03-10T10:24:30.000Z", "updated": "2015-03-10T10:24:30.000Z", "title": "Exponential ergodicity of the jump-diffusion CIR process", "authors": [ "Peng Jin", "Barbara RĂ¼diger", "Chiraz Trabelsi" ], "comment": "14 pages", "categories": [ "math.PR" ], "abstract": "In this paper we study the jump-diffusion CIR process (shorted as JCIR), which is an extension of the classical CIR model. The jumps of the JCIR are introduced with the help of a pure-jump L\\'evy process $(J_t, t \\ge 0)$. Under some suitable conditions on the L\\'evy measure of $(J_t, t \\ge 0)$, we derive a lower bound for the transition densities of the JCIR process. We also find some sufficient condition guaranteeing the existence of a Forster-Lyapunov function for the JCIR process, which allows us to prove its exponential ergodicity.", "revisions": [ { "version": "v1", "updated": "2015-03-10T10:24:30.000Z" } ], "analyses": { "subjects": [ "60H10", "60J60" ], "keywords": [ "jump-diffusion cir process", "exponential ergodicity", "jcir process", "pure-jump levy process", "levy measure" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }