{ "id": "1503.02362", "version": "v1", "published": "2015-03-09T02:46:01.000Z", "updated": "2015-03-09T02:46:01.000Z", "title": "Lifting preprojective algebras to orders and categorifying partial flag varieties", "authors": [ "Laurent Demonet", "Osamu Iyama" ], "comment": "31 pages", "categories": [ "math.RT" ], "abstract": "In this article, we describe a categorification of the cluster algebra structure of multi-homogeneous coordinate rings of partial flag varieties of type $A$ and $D$ using Cohen-Macaulay modules over orders. To achieve this, we construct several equivalences of categories, relating Cohen-Macaulay modules over an order $A$ to finitely generated modules over certain finite length algebras obtained as quotient of $A$ by an idempotent.", "revisions": [ { "version": "v1", "updated": "2015-03-09T02:46:01.000Z" } ], "analyses": { "keywords": [ "categorifying partial flag varieties", "lifting preprojective algebras", "cluster algebra structure", "finite length algebras", "multi-homogeneous coordinate rings" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150302362D" } } }