{ "id": "1503.02347", "version": "v1", "published": "2015-03-09T00:25:05.000Z", "updated": "2015-03-09T00:25:05.000Z", "title": "Hopf algebra $\\mathcal{K}_n$ and universal Chern classes", "authors": [ "Henri Moscovici", "Bahram Rangipour" ], "comment": "42 pages", "categories": [ "math.DG", "math.QA" ], "abstract": "We construct a variant $\\mathcal{K}_n$ of the Hopf algebra $\\mathcal{H}_n$, which acts directly on the noncommutative model for the generic space of leaves rather than on its frame bundle. We prove that the Hopf cyclic cohomology of $\\mathcal{K}_n$ is isomorphic to that of the pair $(\\mathcal{H}_n, {\\mathop{\\rm GL}_n})$ and thus consists of the universal Hopf cyclic classes. We then realize these classes in terms of geometric cocycles.", "revisions": [ { "version": "v1", "updated": "2015-03-09T00:25:05.000Z" } ], "analyses": { "subjects": [ "16E40", "11F11", "16W30", "58J22" ], "keywords": [ "universal chern classes", "hopf algebra", "universal hopf cyclic classes", "hopf cyclic cohomology", "generic space" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable" } } }