{ "id": "1503.01807", "version": "v1", "published": "2015-03-05T22:25:33.000Z", "updated": "2015-03-05T22:25:33.000Z", "title": "Non-spurious solutions to discrete boundary value problems through variational methods", "authors": [ "Marek Galewski", "Ewa Schmeidel" ], "categories": [ "math.CA" ], "abstract": "Using direct variational method we consider the existence of non-spurious solutions to the following Dirichlet problem $\\ddot{x}\\left( t\\right) =f\\left( t,x\\left( t\\right) \\right) $, $x\\left( 0\\right) =x\\left( 1\\right) =0 $ where $f:\\left[ 0,1\\right] \\times \\mathbb{R} \\rightarrow \\mathbb{R}$ is a jointly continuous function convex in $x$ which does not need to satisfy any further growth conditions.", "revisions": [ { "version": "v1", "updated": "2015-03-05T22:25:33.000Z" } ], "analyses": { "subjects": [ "39A12", "39A10", "34B15" ], "keywords": [ "discrete boundary value problems", "non-spurious solutions", "direct variational method", "growth conditions", "dirichlet problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }