{ "id": "1503.01799", "version": "v1", "published": "2015-03-05T21:57:12.000Z", "updated": "2015-03-05T21:57:12.000Z", "title": "Sums of four squares of primes", "authors": [ "Angel V. Kumchev", "Lilu Zhao" ], "categories": [ "math.NT" ], "abstract": "Let $E(N)$ denote the number of positive integers $n \\le N$, with $n \\equiv 4 \\pmod{24}$, which cannot be represented as the sum of four squares of primes. We establish that $E(N)\\ll N^{11/32}$, thus improving on an earlier result of Harman and the first author, where the exponent $7/20$ appears in place of $11/32$.", "revisions": [ { "version": "v1", "updated": "2015-03-05T21:57:12.000Z" } ], "analyses": { "subjects": [ "11P32" ], "keywords": [ "earlier result", "first author", "positive integers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150301799K" } } }