{ "id": "1503.01086", "version": "v1", "published": "2015-03-03T20:07:48.000Z", "updated": "2015-03-03T20:07:48.000Z", "title": "Some properties of a sequence defined with the aid of prime numbers", "authors": [ "Brăduţ Apostol", "Laurenţiu Panaitopol", "Lucian Petrescu", "László Tóth" ], "comment": "7 pages; This research was initiated by Lauren\\c{t}iu Panaitopol (1940--2008), former professor at the Faculty of Mathematics, University of Bucharest, Romania. The present paper is dedicated to his memory", "categories": [ "math.NT" ], "abstract": "For every integer $n\\ge 1$ let $a_n$ be the smallest positive integer such that $n+a_n$ is prime. We investigate the behavior of the sequence $(a_n)_{n\\ge 1}$, and prove asymptotic results for the sums $\\sum_{n\\le x} a_n$, $\\sum_{n\\le x} 1/a_n$ and $\\sum_{n\\le x} \\log a_n$.", "revisions": [ { "version": "v1", "updated": "2015-03-03T20:07:48.000Z" } ], "analyses": { "subjects": [ "11A41", "11N05" ], "keywords": [ "prime numbers", "properties", "asymptotic results" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150301086A" } } }