{ "id": "1503.00955", "version": "v1", "published": "2015-03-03T14:41:03.000Z", "updated": "2015-03-03T14:41:03.000Z", "title": "A note on the zeros of zeta and $L$-functions", "authors": [ "Emanuel Carneiro", "Vorrapan Chandee", "Micah B. Milinovich" ], "categories": [ "math.NT" ], "abstract": "Let $\\pi S(t)$ denote the argument of the Riemann zeta-function at the point $s=\\tfrac12+it$. Assuming the Riemann hypothesis, we give a new and simple proof of the sharpest known bound for $S(t)$. We discuss a generalization of this bound for a large class of $L$-functions including those which arise from cuspidal automorphic representations of GL($m$) over a number field. We also prove a number of related results including bounding the order of vanishing of an $L$-function at the central point and bounding the height of the lowest zero of an $L$-function.", "revisions": [ { "version": "v1", "updated": "2015-03-03T14:41:03.000Z" } ], "analyses": { "subjects": [ "11M06", "11M26", "11M36", "11M41", "41A30" ], "keywords": [ "cuspidal automorphic representations", "riemann zeta-function", "riemann hypothesis", "lowest zero", "central point" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }