{ "id": "1503.00637", "version": "v1", "published": "2015-03-02T17:46:07.000Z", "updated": "2015-03-02T17:46:07.000Z", "title": "Parametric solutions of Pell equations", "authors": [ "Leonardo Zapponi" ], "categories": [ "math.NT" ], "abstract": "This short paper is concerned with polynomial Pell equations \\[P^2-DQ^2=1,\\] with $P,Q,D\\in\\Bbb C[X]$ and ${deg}(D)=2$. The main result shows that the polynomials $P$ and $Q$ are closely related to Chebyshev polynomials. We then investigate the existence of such polynomials in $\\Bbb Z[X]$ specializing to fixed solutions of ordinary Pell equations over the integers.", "revisions": [ { "version": "v1", "updated": "2015-03-02T17:46:07.000Z" } ], "analyses": { "keywords": [ "parametric solutions", "polynomial pell equations", "ordinary pell equations", "chebyshev polynomials", "short paper" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }