{ "id": "1503.00466", "version": "v1", "published": "2015-03-02T10:13:37.000Z", "updated": "2015-03-02T10:13:37.000Z", "title": "Spectral estimation for diffusions with random sampling times", "authors": [ "Jakub Chorowski", "Mathias Trabs" ], "comment": "26 pages, 2 figures", "categories": [ "math.ST", "math.PR", "stat.ME", "stat.TH" ], "abstract": "The nonparametric estimation of the volatility and the drift coefficient of a scalar diffusion is studied when the process is observed at random time points. The constructed estimator generalizes the spectral method by Gobet, Hoffmann and Rei{\\ss} [Ann. Statist. 32 (2006), 2223-2253]. The estimation procedure is optimal in the minimax sense and adaptive with respect to the sampling time distribution. The finite sample performance is illustrated in a numerical example.", "revisions": [ { "version": "v1", "updated": "2015-03-02T10:13:37.000Z" } ], "analyses": { "subjects": [ "62M05", "60J60", "62G99", "62M15" ], "keywords": [ "random sampling times", "spectral estimation", "finite sample performance", "random time points", "drift coefficient" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150300466C" } } }