{ "id": "1503.00345", "version": "v1", "published": "2015-03-01T20:29:19.000Z", "updated": "2015-03-01T20:29:19.000Z", "title": "Exact upper and lower bounds on the difference between the arithmetic and geometric means", "authors": [ "Iosif Pinelis" ], "comment": "8 pages; to appear in the Bulletin of the Australian Mathematical Society", "categories": [ "math.PR" ], "abstract": "Let $X$ denote a random variable with $\\mathsf{E} X<\\infty$. Upper and lower bounds on $\\mathsf{E} X-\\exp\\mathsf{E}\\ln X$ are obtained, which are exact, in terms of $V_X$ and $E_X$ for the upper bound and in terms of $V_X$ and $F_X$ for the lower bound, where $V_X:=\\mathsf{Var}\\sqrt X$, $E_X:=\\mathsf{E}\\big(\\sqrt X-\\sqrt{m_X}\\,\\big)^2$, $F_X:=\\mathsf{E}\\big(\\sqrt{M_X}-\\sqrt X\\,\\big)^2$, $m_X:=\\inf S_X$, $M_X:=\\sup S_X$, and $S_X$ is the support set of the distribution of $X$. Note that, if $X$ takes each of distinct real values $x_1,\\dots,x_n$ with probability $1/n$, then $\\mathsf{E} X$ and $\\exp\\mathsf{E}\\ln X$ are, respectively, the arithmetic and geometric means of $x_1,\\dots,x_n$.", "revisions": [ { "version": "v1", "updated": "2015-03-01T20:29:19.000Z" } ], "analyses": { "subjects": [ "60E15", "26D15", "90C46" ], "keywords": [ "lower bound", "geometric means", "exact upper", "arithmetic", "difference" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150300345P" } } }