{ "id": "1503.00317", "version": "v1", "published": "2015-03-01T17:36:13.000Z", "updated": "2015-03-01T17:36:13.000Z", "title": "Analogy between the cyclotomic trace map $K \\rightarrow TC$ and the Grothendieck trace formula via noncommutative geometry", "authors": [ "Ilias Amrani" ], "comment": "Comments are welcome", "categories": [ "math.AT", "math.AG", "math.KT", "math.NT" ], "abstract": "In this article, we suggest a categorification procedure in order to capture an analogy between Crystalline Grothendieck-Lefschetz trace formula and the cyclotomic trace map $K\\rightarrow TC$ from the algebraic $K$-theory to the topological cyclic homology $TC$. First, we categorify the category of schemes to the $(2, \\infty)$-category of noncommuatative schemes a la Kontsevich. This gives a categorification of the set of rational points of a scheme. Then, we categorify the Crystalline Grothendieck-Lefschetz trace formula and find an analogue to the Crystalline cohomology in the setting of noncommuative schemes over $\\mathbf{F}_{p}$. Our analogy suggests the existence of a categorification of the $l$-adic cohomology trace formula in the noncommutative setting for $l\\neq p$. Finally, we write down the corresponding dictionary.", "revisions": [ { "version": "v1", "updated": "2015-03-01T17:36:13.000Z" } ], "analyses": { "subjects": [ "19E08", "14F30", "14A22", "55N15", "11M38" ], "keywords": [ "cyclotomic trace map", "grothendieck trace formula", "crystalline grothendieck-lefschetz trace formula", "noncommutative geometry", "adic cohomology trace formula" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }