{ "id": "1502.07983", "version": "v1", "published": "2015-02-27T17:40:20.000Z", "updated": "2015-02-27T17:40:20.000Z", "title": "Large deviations principle for the largest eigenvalue of Wigner matrices without Gaussian tails", "authors": [ "Fanny Augeri" ], "categories": [ "math.PR" ], "abstract": "We prove a large deviation principle for the largest eigenvalue of Wigner matrices without Gaussian tails, namely such that the distribution tails $\\mathbb{P}( |X_{1,1}|>t)$ and $\\mathbb{P}(|X_{1,2}|>t)$ behave like $e^{-bt^{\\alpha}}$ and $e^{-at^{\\alpha}}$ respectively for some $a,b\\in (0,+\\infty)$ and $\\alpha\\in (0,2)$. The large deviation principle is of speed $N^{\\alpha/2}$ and with an explicit good rate function depending only on the tail distribution of the entries.", "revisions": [ { "version": "v1", "updated": "2015-02-27T17:40:20.000Z" } ], "analyses": { "keywords": [ "large deviations principle", "largest eigenvalue", "wigner matrices", "gaussian tails", "large deviation principle" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150207983A" } } }