{ "id": "1502.06836", "version": "v1", "published": "2015-02-24T15:34:45.000Z", "updated": "2015-02-24T15:34:45.000Z", "title": "A characterisation of the Besov-Lipschitz and Triebel-Lizorkin spaces using Poisson like kernels", "authors": [ "Huy-Qui Bui", "Timothy Candy" ], "comment": "40 pages", "categories": [ "math.FA" ], "abstract": "We give a complete characterisation of the spaces $\\dot{B}^{\\alpha}_{p,q}$ and $\\dot{F}^{\\alpha}_{p,q}$ by using a non-smooth kernel satisfying near minimal conditions. The tools used include a Stromberg-Torchinsky type estimate for certain maximal functions and the concept of a distribution of finite growth, inspired by Stein. Moreover, our exposition also makes essential use of a number of refinements of the well-known Calderon reproducing formula. The results are then applied to obtain the characterisation of these spaces via a fractional derivative of the Poisson kernel.", "revisions": [ { "version": "v1", "updated": "2015-02-24T15:34:45.000Z" } ], "analyses": { "subjects": [ "42B25", "46E35" ], "keywords": [ "triebel-lizorkin spaces", "besov-lipschitz", "well-known calderon reproducing formula", "stromberg-torchinsky type estimate", "non-smooth kernel" ], "note": { "typesetting": "TeX", "pages": 40, "language": "en", "license": "arXiv", "status": "editable" } } }