{ "id": "1502.06768", "version": "v1", "published": "2015-02-24T11:27:13.000Z", "updated": "2015-02-24T11:27:13.000Z", "title": "Blow-up solutions for some nonlinear elliptic equations involving a Finsler-Laplacian", "authors": [ "Francesco Della Pietra", "Giuseppina di Blasio" ], "categories": [ "math.AP" ], "abstract": "In this paper we prove existence results and asymptotic behavior for strong solutions $u\\in W^{2,2}_{\\textrm{loc}}(\\Omega)$ of the nonlinear elliptic problem \\begin{equation} \\tag{P} \\label{abstr} \\left\\{ \\begin{array}{ll} -\\Delta_{H}u+H(\\nabla u)^{q}+\\lambda u=f&\\text{in }\\Omega,\\\\ u\\rightarrow +\\infty &\\text{on }\\partial\\Omega, \\end{array} \\right. \\end{equation} where $H$ is a suitable norm of $\\mathbb R^{n}$, $\\Omega$ is a bounded domain, $\\Delta_{H}$ is the Finsler Laplacian, $10$ and $f$ is a suitable function in $L^{\\infty}_{\\textrm{loc}}$. Furthermore, we are interested in the behavior of the solutions when $\\lambda\\rightarrow 0^{+}$, studying the so-called ergodic problem associated to \\eqref{abstr}. A key role in order to study the ergodic problem will be played by local gradient estimates for \\eqref{abstr}.", "revisions": [ { "version": "v1", "updated": "2015-02-24T11:27:13.000Z" } ], "analyses": { "subjects": [ "35J60", "35J25", "35B44" ], "keywords": [ "nonlinear elliptic equations", "blow-up solutions", "finsler-laplacian", "ergodic problem", "local gradient estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }