{ "id": "1502.06454", "version": "v1", "published": "2015-02-23T14:58:35.000Z", "updated": "2015-02-23T14:58:35.000Z", "title": "Arithmetic Identities and Congruences for Partition Triples with 3-cores", "authors": [ "Liuquan Wang" ], "comment": "14 pages", "categories": [ "math.NT" ], "abstract": "Let ${{B}_{3}}(n)$ denote the number of partition triples of $n$ where each partition is 3-core. With the help of generating function manipulations, we find several infinite families of arithmetic identities and congruences for ${{B}_{3}}(n)$. Moreover, let $\\omega (n)$ denote the number of representations of a nonnegative integer $n$ in the form $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+3y_{1}^{2}+3y_{2}^{2}+3y_{3}^{2}$ with ${{x}_{1}},{{x}_{2}},{{x}_{3}},{{y}_{1}},{{y}_{2}},{{y}_{3}}\\in \\mathbb{Z}.$ We find three arithmetic relations between ${{B}_{3}}(n)$ and $\\omega (n)$, such as $\\omega (6n+5)=4{{B}_{3}}(6n+4).$", "revisions": [ { "version": "v1", "updated": "2015-02-23T14:58:35.000Z" } ], "analyses": { "subjects": [ "05A17", "11P83" ], "keywords": [ "partition triples", "arithmetic identities", "congruences", "generating function manipulations", "arithmetic relations" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }