{ "id": "1502.06259", "version": "v1", "published": "2015-02-22T18:47:03.000Z", "updated": "2015-02-22T18:47:03.000Z", "title": "Gradient and gradient-free methods for stochastic convex optimization with inexact oracle", "authors": [ "Alexander Gasnikov", "Pavel Dvurechensky", "Kamzolov Dmitry" ], "comment": "in Russian, 9 pages", "categories": [ "math.OC" ], "abstract": "In the paper we generalize universal gradient method (Yu. Nesterov) to strongly convex case and to Intermediate gradient method (Devolder-Glineur-Nesterov). We also consider possible generalizations to stochastic and online context. We show how these results can be generalized to gradient-free method and method of random direction search. But the main ingridient of this paper is assumption about the oracle. We considered the oracle to be inexact.", "revisions": [ { "version": "v1", "updated": "2015-02-22T18:47:03.000Z" } ], "analyses": { "keywords": [ "stochastic convex optimization", "gradient-free method", "inexact oracle", "generalize universal gradient method", "random direction search" ], "note": { "typesetting": "TeX", "pages": 9, "language": "ru", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150206259G" } } }