{ "id": "1502.05994", "version": "v1", "published": "2014-12-16T09:46:49.000Z", "updated": "2014-12-16T09:46:49.000Z", "title": "On the equivalence between the sets of the trigonometric polynomials", "authors": [ "Krystian Kazaniecki", "MichaƂ Wojciechowski" ], "comment": "6 pages", "categories": [ "math.CA", "math.FA" ], "abstract": "In this paper we construct an injection from the linear space of trigonometric polynomials defined on $\\mathbb{T}^d$ with bounded degrees with respect to each variable to a suitable linear subspace $L^1_E\\subset L^1(\\mathbb{T})$. We give such a quantitative condition on $L^1_E$ that this injection is a isomorphism of a Banach spaces equipped with $L^1$ norm and the norm of the isomorphism is independent on the dimension $d$.", "revisions": [ { "version": "v1", "updated": "2014-12-16T09:46:49.000Z" } ], "analyses": { "keywords": [ "equivalence", "linear space", "suitable linear subspace", "isomorphism", "quantitative condition" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }