{ "id": "1502.05963", "version": "v1", "published": "2015-02-20T18:21:26.000Z", "updated": "2015-02-20T18:21:26.000Z", "title": "Two-end solutions to the Allen-Cahn equation in $\\mathbb{R}^{3}$", "authors": [ "Changfeng Gui", "Yong Liu", "Juncheng Wei" ], "comment": "55 pages; comments welcome", "categories": [ "math.AP", "math.DG" ], "abstract": "In this paper we consider the Allen-Cahn equation $$ -\\Delta u = u-u^3 \\ \\mbox{in} \\ {\\mathbb R}^3 $$ We prove that for each $k\\in\\left( \\sqrt{2},+\\infty\\right),$ there exists a solution to the equation which has growth rate $k$, i.e. $$ \\| u-H(\\cdot -k \\ln r + c_k) \\|_{L^\\infty} \\to 0$$ The main ingredients of our proof consist: (1) compactness of solutions with growth $k$, (2) moduli space theory of analytical variety of formal dimension one.", "revisions": [ { "version": "v1", "updated": "2015-02-20T18:21:26.000Z" } ], "analyses": { "keywords": [ "allen-cahn equation", "two-end solutions", "moduli space theory", "growth rate", "formal dimension" ], "note": { "typesetting": "TeX", "pages": 55, "language": "en", "license": "arXiv", "status": "editable" } } }