{ "id": "1502.05927", "version": "v1", "published": "2015-02-20T16:43:12.000Z", "updated": "2015-02-20T16:43:12.000Z", "title": "Infinitely many global continua bifurcating from a single solution of an elliptic problem with concave-convex nonlinearity", "authors": [ "Thomas Bartsch", "Rainer Mandel" ], "categories": [ "math.AP" ], "abstract": "We study the bifurcation of solutions of semilinear elliptic boundary value problems of the form \\begin{equation} \\left\\{ \\begin{aligned} -\\Delta u &= f_\\lambda(|x|,u,|\\nabla u|) &&\\text{in }\\Omega, u &= 0 &&\\text{on }\\partial\\Omega, \\end{aligned} \\right. \\end{equation} on an annulus $\\Omega\\subset\\mathbb{R}^N$, with a concave-convex nonlinearity, a special case being the nonlinearity first considered by Ambrosetti, Brezis and Cerami: $f_\\lambda(|x|,u,|\\nabla u|)=\\lambda|u|^{q-2}u + |u|^{p-2}u$ with $1