{ "id": "1502.04796", "version": "v1", "published": "2015-02-17T04:58:02.000Z", "updated": "2015-02-17T04:58:02.000Z", "title": "An Inequality for Gaussians on Lattices", "authors": [ "Oded Regev", "Noah Stephens-Davidowitz" ], "categories": [ "math.PR" ], "abstract": "We show that for any lattice $L \\subseteq R^n$ and vectors $x, y \\in R^n$, \\[ \\rho(L+ x)^2 \\rho(L + y)^2 \\leq \\rho(L)^2 \\rho(L + x+y) \\rho(L + x - y) \\;, \\] where $\\rho$ is the Gaussian measure $\\rho(A) := \\sum_{w \\in A} e^{-\\pi ||w||^2}$. We show a number of applications, including bounds on the moments of the discrete Gaussian distribution, various monotonicity properties, and a positive correlation inequality for Gaussian measures on lattices.", "revisions": [ { "version": "v1", "updated": "2015-02-17T04:58:02.000Z" } ], "analyses": { "keywords": [ "gaussian measure", "discrete gaussian distribution", "monotonicity properties", "positive correlation inequality", "applications" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150204796R" } } }