{ "id": "1502.04633", "version": "v1", "published": "2015-02-13T20:01:20.000Z", "updated": "2015-02-13T20:01:20.000Z", "title": "Evaluations of Hecke algebra traces at Kazhdan-Lusztig basis elements", "authors": [ "Samuel Clearman", "Matthew Hyatt", "Brittany Shelton", "Mark Skandera" ], "categories": [ "math.CO", "math.RT" ], "abstract": "For irreducible characters $\\{ \\chi_q^\\lambda \\,|\\, \\lambda \\vdash n \\}$, induced sign characters $\\{ \\epsilon_q^\\lambda \\,|\\, \\lambda \\vdash n \\}$, and induced trivial characters $\\{ \\eta_q^\\lambda \\,|\\, \\lambda \\vdash n \\}$ of the Hecke algebra $H_n(q)$, and Kazhdan-Lusztig basis elements $C'_w(q)$ with $w$ avoiding the patterns 3412 and 4231, we combinatorially interpret the polynomials $\\chi_q^\\lambda(q^{l(w)/2}C'_w(q))$, $\\epsilon_q^\\lambda(q^{l(w)/2} C'_w(q))$, and $\\smash{\\eta_q^\\lambda(q^{l(w)/2} C'_w(q))}$. This gives a new algebraic interpretation of chromatic quasisymmetric functions of Shareshian and Wachs, and a new combinatorial interpretation of special cases of results of Haiman. We prove similar results for other $H_n(q)$-traces, and confirm a formula conjectured by Haiman.", "revisions": [ { "version": "v1", "updated": "2015-02-13T20:01:20.000Z" } ], "analyses": { "subjects": [ "05E05", "05E10", "20C08" ], "keywords": [ "kazhdan-lusztig basis elements", "hecke algebra traces", "evaluations", "chromatic quasisymmetric functions", "induced trivial characters" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150204633C" } } }