{ "id": "1502.04160", "version": "v1", "published": "2015-02-14T02:38:57.000Z", "updated": "2015-02-14T02:38:57.000Z", "title": "An Exercise (?) in Fourier Analysis on the Heisenberg Group", "authors": [ "Daniel Bump", "Persi Diaconis", "Angela Hicks", "Laurent Miclo", "Harold Widom" ], "comment": "24 pages, 6 figures", "categories": [ "math.PR" ], "abstract": "Let H(n) be the group of 3x3 uni-uppertriangular matrices with entries in Z/nZ, the integers mod n. We show that the simple random walk converges to the uniform distribution in order n^2 steps. The argument uses Fourier analysis and is surprisingly challenging. It introduces novel techniques for bounding the spectrum which are useful for a variety of walks on a variety of groups.", "revisions": [ { "version": "v1", "updated": "2015-02-14T02:38:57.000Z" } ], "analyses": { "subjects": [ "60J10", "60B15" ], "keywords": [ "fourier analysis", "heisenberg group", "simple random walk converges", "3x3 uni-uppertriangular matrices", "novel techniques" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }