{ "id": "1502.04096", "version": "v1", "published": "2015-02-13T19:31:51.000Z", "updated": "2015-02-13T19:31:51.000Z", "title": "Zero-sum flows for Steiner triple systems", "authors": [ "S. Akbari", "A. C. Burgess", "P. Danziger", "E. Mendelsohn" ], "comment": "21 pages", "categories": [ "math.CO" ], "abstract": "Given a $2$-$(v,k,\\lambda)$ design, $\\cal{S}=(X,\\cal{B})$, a {\\it zero-sum $n$-flow} of $\\cal{S}$ is a map $f: \\cal{B} \\longrightarrow \\{\\pm 1, \\ldots ,\\pm (n-1)\\}$ such that for any point $x\\in X$, the sum of $f$ around all the blocks incident with $x$ is zero. It has been conjectured that every Steiner triple system, STS$(v)$, on $v$ points $(v>7)$ admits a zero-sum $3$-flow. We show that for every pair $(v,\\lambda)$, for which a triple system, TS$(v,\\lambda)$ exists, there exists one which has a zero-sum $3$-flow, except when $(v,\\lambda)\\in\\{(3,1), (4,2), (6,2), (7,1)\\}$ and except possibly when $v \\equiv 10\\pmod{12}$ and $\\lambda = 2$. We also give a $O(\\lambda^2v^2)$ bound on $n$ and a recursive result which shows that every STS$(v)$ with a zero-sum $3$-flow can be embedded in an STS$(2v+1)$ with a zero-sum $3$-flow if $v\\equiv 3 \\pmod 4$, a zero-sum $4$-flow if $v\\equiv 3 \\pmod 6$ and with a zero-sum $5$-flow if $v\\equiv 1 \\pmod 4$.", "revisions": [ { "version": "v1", "updated": "2015-02-13T19:31:51.000Z" } ], "analyses": { "subjects": [ "05B05", "05B20", "05C15", "05C21" ], "keywords": [ "steiner triple system", "zero-sum flows", "blocks incident", "recursive result" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }