{ "id": "1502.03474", "version": "v1", "published": "2015-02-11T22:34:33.000Z", "updated": "2015-02-11T22:34:33.000Z", "title": "On partial regularity for the $3D$ non-stationary Hall magnetohydrodynamics equations on the plane", "authors": [ "Dongho Chae", "Joerg Wolf" ], "comment": "31 pages", "categories": [ "math.AP" ], "abstract": "We study partial regularity of weak solutions of the 3D valued non-stationary Hall magnetohydrodynamics equations on $ \\Bbb R^2$. In particular we prove the existence of a weak solution whose set of possible singularities has the space-time Hausdorff dimension at most two.", "revisions": [ { "version": "v1", "updated": "2015-02-11T22:34:33.000Z" } ], "analyses": { "subjects": [ "35Q35", "35Q85", "76W05" ], "keywords": [ "weak solution", "valued non-stationary hall magnetohydrodynamics equations", "3d valued non-stationary hall magnetohydrodynamics", "study partial regularity", "space-time hausdorff dimension" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }