{ "id": "1502.03056", "version": "v1", "published": "2015-02-09T16:57:07.000Z", "updated": "2015-02-09T16:57:07.000Z", "title": "On universal sums $ax^2+by^2+f(z)$, $aT_x+bT_y+f(z)$ and $aT_x+by^2+f(z)$", "authors": [ "Zhi-Wei Sun" ], "comment": "21 pages", "categories": [ "math.NT" ], "abstract": "For integer-valued polynomials $f_1(x),f_2(y),f_3(z)$, if any $n\\in\\mathbb N=\\{0,1,2,...\\}$ can be written as $f_1(x)+f_2(y)+f_3(z)$ with $x,y,z\\in\\mathbb N$ then we say that $f_1(x)+f_2(y)+f_3(z)$ is universal (over $\\mathbb N$). In this paper we find all candidates of universal sums of the following three types: $$ax^2+by^2+f(z),\\ aT_x+bT_y+f(z),\\ aT_x+by^2+f(z),$$ where $T_x$ denotes $x(x+1)/2$ and $f(z)$ has the form $c\\binom z2+dz$ with $c,d\\in\\{1,2,3,...\\}$ and $d\\nmid c$. We also show that some of the candidates (including $T_x+y^2+z(z+2k)$ for $k=1,2,3$, and $T_x+y^2+z(z+2k+1)/2$ for $k=1,...,7$) are indeed universal sums.", "revisions": [ { "version": "v1", "updated": "2015-02-09T16:57:07.000Z" } ], "analyses": { "subjects": [ "11E25", "11B75", "11D85", "11E20", "11P32" ], "keywords": [ "universal sums", "candidates", "integer-valued polynomials" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }