{ "id": "1502.03029", "version": "v1", "published": "2015-02-10T18:31:43.000Z", "updated": "2015-02-10T18:31:43.000Z", "title": "Counting Generic Quadrisecants of Polygonal Knots", "authors": [ "Aldo-Hilario Cruz-Cota", "Teresita Ramirez-Rosas" ], "comment": "11 pages", "categories": [ "math.GT" ], "abstract": "Let $K$ be a polygonal knot in general position with vertex set $V$. A generic quadrisecant of $K$ is a line that is disjoint from the set $V$ and intersects $K$ in exactly four distinct points. We give an upper bound for the number of generic quadrisecants of a polygonal knot $K$ in general position. This upper bound is in terms of the number of edges of $K$.", "revisions": [ { "version": "v1", "updated": "2015-02-10T18:31:43.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "polygonal knot", "counting generic quadrisecants", "general position", "upper bound", "vertex set" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150203029C" } } }