{ "id": "1502.03001", "version": "v1", "published": "2015-02-10T17:34:23.000Z", "updated": "2015-02-10T17:34:23.000Z", "title": "Connectivity of the branch locus of moduli space of rational maps", "authors": [ "Ruben A. Hidalgo", "Saul Quispe" ], "categories": [ "math.DS" ], "abstract": "The branch locus ${\\mathcal B}_{d}$ in moduli space ${\\rm M}_{d}$ of rational maps of degree $d \\geq 2$ consits of the equivalence classes of rational maps with non-trivial holomorphic automorphisms. Milnor proved that ${\\mathcal B}_{2}$ is a cubic curve; so connected. In this paper we see that ${\\mathcal B}_{d}$ is always connected. As, for $d \\geq 3$, the singular locus of ${\\rm M}_{d}$ equals the branch locus, this also provides the connectivity of that locus.", "revisions": [ { "version": "v1", "updated": "2015-02-10T17:34:23.000Z" } ], "analyses": { "subjects": [ "37P45", "37F10", "37P05" ], "keywords": [ "rational maps", "branch locus", "moduli space", "connectivity", "non-trivial holomorphic automorphisms" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150203001H" } } }