{ "id": "1502.02413", "version": "v1", "published": "2015-02-09T10:07:53.000Z", "updated": "2015-02-09T10:07:53.000Z", "title": "Tilings of amenable groups", "authors": [ "Tomasz Downarowicz", "Dawid Huczek", "Guohua Zhang" ], "comment": "23 pages", "categories": [ "math.GR" ], "abstract": "We prove that for any infinite countable amenable group $G$, any $\\epsilon > 0$ and any finite subset $K\\subset G$, there exists a tiling (partition of $G$ into finite \"tiles\" using only finitely many \"shapes\"), where all the tiles are $(K; \\epsilon)$-invariant. Moreover, our tiling has topological entropy zero (i.e., subexponential complexity of patterns). As an application, we construct a free action of $G$ (in the sense that the mappings, associated to different from unity elements of $G$, have no fixpoints), on a zero-dimensional space, and which has topological entropy zero.", "revisions": [ { "version": "v1", "updated": "2015-02-09T10:07:53.000Z" } ], "analyses": { "keywords": [ "topological entropy zero", "finite subset", "unity elements", "zero-dimensional space", "free action" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }