{ "id": "1502.02299", "version": "v1", "published": "2015-02-08T20:28:16.000Z", "updated": "2015-02-08T20:28:16.000Z", "title": "Endpoint regularity of $2$d Mumford-Shah minimizers", "authors": [ "Camillo De Lellis", "Matteo Focardi" ], "categories": [ "math.AP" ], "abstract": "We prove an $\\varepsilon$-regularity theorem at the endpoint of connected arcs for $2$-dimensional Mumford-Shah minimizers. In particular we show that, if in a given ball $B_r (x)$ the jump set of a given Mumford-Shah minimizer is sufficiently close, in the Hausdorff distance, to a radius of $B_r (x)$, then in a smaller ball the jump set is a connected arc which terminates at some interior point $y_0$ and it is $C^{1,\\alpha}$ up to $y_0$.", "revisions": [ { "version": "v1", "updated": "2015-02-08T20:28:16.000Z" } ], "analyses": { "keywords": [ "endpoint regularity", "jump set", "dimensional mumford-shah minimizers", "connected arc", "regularity theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150202299D" } } }