{ "id": "1502.02221", "version": "v1", "published": "2015-02-08T07:08:55.000Z", "updated": "2015-02-08T07:08:55.000Z", "title": "Existence and concentration of solutions for a fractional Schrodinger equations with sublinear nonlinearity", "authors": [ "Jinguo Zhang", "Weifeng Jiang" ], "comment": "8pages", "categories": [ "math.AP" ], "abstract": "This article concerns the fractional elliptic equations \\begin{equation*}(-\\Delta)^{s}u+\\lambda V(x)u=f(u), \\quad u\\in H^{s}(\\mathbb{R}^N), \\end{equation*}where $(-\\Delta)^{s}$ ($s\\in (0\\,,\\,1)$) denotes the fractional Laplacian, $\\lambda >0$ is a parameter, $V\\in C(\\mathbb{R}^N)$ and $V^{-1}(0)$ has nonempty interior. Under some mild assumptions, we establish the existence of nontrivial solutions. Moreover, the concentration of solutions is also explored on the set $V^{-1}(0)$ as $\\lambda\\to\\infty$.", "revisions": [ { "version": "v1", "updated": "2015-02-08T07:08:55.000Z" } ], "analyses": { "keywords": [ "fractional schrodinger equations", "sublinear nonlinearity", "concentration", "fractional elliptic equations", "article concerns" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }