{ "id": "1502.02190", "version": "v1", "published": "2015-02-07T22:39:02.000Z", "updated": "2015-02-07T22:39:02.000Z", "title": "The Chromatic Splitting Conjecture at n=p=2", "authors": [ "Agnes Beaudry" ], "categories": [ "math.AT" ], "abstract": "We show that the strongest form of Hopkins' chromatic splitting conjecture, as stated by Hovey, cannot hold at chromatic level n=2 at the prime p=2. More precisely, for V(0) the mod 2 Moore spectrum, we prove that the k'th homotopy group of L_1L_{K(2)}V(0) is not zero when k is congruent to 5 modulo 8. We explain how this contradicts the decomposition of L_1L_{K(2)}S predicted by the chromatic splitting conjecture.", "revisions": [ { "version": "v1", "updated": "2015-02-07T22:39:02.000Z" } ], "analyses": { "subjects": [ "55Q45", "55P60" ], "keywords": [ "chromatic splitting conjecture", "kth homotopy group", "strongest form", "moore spectrum", "chromatic level" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150202190B" } } }