{ "id": "1502.01926", "version": "v1", "published": "2015-02-06T16:00:06.000Z", "updated": "2015-02-06T16:00:06.000Z", "title": "Weighted Intriguing Sets in Finite Polar Spaces", "authors": [ "John Bamberg", "Jan De Beule", "Ferdinand Ihringer" ], "comment": "21 pages", "categories": [ "math.CO" ], "abstract": "We develop a theory for ovoids and tight sets in finite classical polar spaces, and we illustrate the usefulness of the theory by providing new proofs for the non-existence of ovoids of particular finite classical polar spaces, including $\\mathsf{Q}^+(9, q)$, $q$ even, and $\\mathsf{H}(5, 4)$. We also improve the results of A. Klein on the non-existence of ovoids of $\\mathsf{H}(2n+1,q^2)$ and $\\mathsf{Q}^+(2n+1, q^2)$.", "revisions": [ { "version": "v1", "updated": "2015-02-06T16:00:06.000Z" } ], "analyses": { "subjects": [ "05B25", "51E20", "51A50" ], "keywords": [ "finite polar spaces", "weighted intriguing sets", "finite classical polar spaces", "tight sets", "non-existence" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150201926B" } } }