{ "id": "1502.00938", "version": "v1", "published": "2015-02-03T17:34:09.000Z", "updated": "2015-02-03T17:34:09.000Z", "title": "Central Limit Theorems for some Set Partition Statistics", "authors": [ "Bobbie Chern", "Persi Diaconis", "Daniel M. Kane", "Robert C. Rhoades" ], "categories": [ "math.CO", "math.PR" ], "abstract": "We prove the conjectured limiting normality for the number of crossings of a uniformly chosen set partition of [n] = {1,2,...,n}. The arguments use a novel stochastic representation and are also used to prove central limit theorems for the dimension index and the number of levels.", "revisions": [ { "version": "v1", "updated": "2015-02-03T17:34:09.000Z" } ], "analyses": { "subjects": [ "05A18", "05A16", "60C05" ], "keywords": [ "central limit theorems", "set partition statistics", "uniformly chosen set partition", "novel stochastic representation", "dimension index" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150200938C" } } }