{ "id": "1502.00573", "version": "v1", "published": "2015-02-02T18:39:41.000Z", "updated": "2015-02-02T18:39:41.000Z", "title": "Quantifier elimination in C*-algebras", "authors": [ "Christopher J. Eagle", "Ilijas Farah", "Eberhard Kirchberg", "Alessandro Vignati" ], "categories": [ "math.LO", "math.OA" ], "abstract": "Conjecturally, the only C*-algebras that admit elimination of quantifiers in continuous logic are $\\mathbb{C}, \\mathbb{C}^2$, $C($Cantor space$)$ and $M_2(\\mathbb{C})$. Concentrating on the noncommutative case, we prove that $M_2(\\mathbb C)$ is the only exact noncommutative C*-algebra whose theory admits elimination of quantifiers and that every other example is purely infinite and simple.", "revisions": [ { "version": "v1", "updated": "2015-02-02T18:39:41.000Z" } ], "analyses": { "subjects": [ "03C10", "03C65", "03C90", "46L89", "46L05", "46M07" ], "keywords": [ "quantifier elimination", "theory admits elimination", "admit elimination", "cantor space", "continuous logic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150200573E" } } }