{ "id": "1501.07258", "version": "v1", "published": "2015-01-28T20:15:39.000Z", "updated": "2015-01-28T20:15:39.000Z", "title": "The divisible sandpile at critical density", "authors": [ "Lionel Levine", "Mathav Murugan", "Yuval Peres", "Baris Evren Ugurcan" ], "comment": "33 pages", "categories": [ "math.PR", "cond-mat.stat-mech", "math.AP" ], "abstract": "The divisible sandpile starts with i.i.d. random variables (\"masses\") at the vertices of an infinite, vertex-transitive graph, and redistributes mass by a local toppling rule in an attempt to make all masses at most 1. The process stabilizes almost surely if m<1 and it almost surely does not stabilize if m>1, where $m$ is the mean mass per vertex. The main result of this paper is that in the critical case m=1, if the initial masses have finite variance, then the process almost surely does not stabilize. To give quantitative estimates on a finite graph, we relate the number of topplings to a discrete biLaplacian Gaussian field.", "revisions": [ { "version": "v1", "updated": "2015-01-28T20:15:39.000Z" } ], "analyses": { "subjects": [ "60J45", "60G15", "82C20", "82C26" ], "keywords": [ "critical density", "divisible sandpile", "discrete bilaplacian gaussian field", "random variables", "mean mass" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150107258L" } } }