{ "id": "1501.07235", "version": "v1", "published": "2015-01-28T19:02:35.000Z", "updated": "2015-01-28T19:02:35.000Z", "title": "Monotonicity of zeros of polynomials orthogonal with respect to a discrete measure", "authors": [ "Dimitar K. Dimitrov" ], "categories": [ "math.CA" ], "abstract": "We prove that all zeros of the polynomials orthogonal with respect to a measure $d \\mu(x;a) = d \\mu(x) + M \\delta(x-a)$, where $d\\mu$ is a nonatomic positive Borel measure and $M>0$, are increasing functions of the mass point $a$. Thus we solve partially an open problem posed by Mourad Ismail.", "revisions": [ { "version": "v1", "updated": "2015-01-28T19:02:35.000Z" } ], "analyses": { "keywords": [ "polynomials orthogonal", "discrete measure", "monotonicity", "nonatomic positive borel measure", "mourad ismail" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }