{ "id": "1501.07090", "version": "v1", "published": "2015-01-28T12:56:07.000Z", "updated": "2015-01-28T12:56:07.000Z", "title": "Some numerical results on the behavior of zeros of the Hermite-Padé polynomials", "authors": [ "N. R. Ikonomov", "R. K. Kovacheva", "S. P. Suetin" ], "comment": "Bibliography: 71 titles; 79 pictures", "categories": [ "math.CV" ], "abstract": "We introduce and analyze some numerical results obtained by the authors experimentally. These experiments are related to the well known problem about the distribution of the zeros of Hermite--Pad\\'e polynomials for a collection of three functions $[f_0 \\equiv 1,f_1,f_2]$. The numerical results refer to two cases: a pair of functions $f_1,f_2$ forms an Angelesco system and a pair of functions $f_1=f,f_2=f^2$ forms a (generalized) Nikishin system. The authors hope that the obtained numerical results will set up a new conjectures about the limiting distribution of the zeros of Hermite--Pad\\'e polynomials.", "revisions": [ { "version": "v1", "updated": "2015-01-28T12:56:07.000Z" } ], "analyses": { "subjects": [ "30E10", "41A21" ], "keywords": [ "hermite-pade polynomials", "nikishin system", "distribution", "numerical results refer", "angelesco system" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150107090I" } } }