{ "id": "1501.06986", "version": "v1", "published": "2015-01-28T04:46:55.000Z", "updated": "2015-01-28T04:46:55.000Z", "title": "On the $\\frac{1}{H}$-variation of the divergence integral with respect to fractional Brownian motion with Hurst parameter $H < 1/2$", "authors": [ "El Hassan Essaky", "David Nualart" ], "comment": "29 pages", "categories": [ "math.PR" ], "abstract": "In this paper, we study the $\\frac{1}{H}$-variation of stochastic divergence integrals $X_t = \\int_0^t u_s {\\delta}B_s$ with respect to a fractional Brownian motion $B$ with Hurst parameter $H < \\frac{1}{2}$. Under suitable assumptions on the process u, we prove that the $\\frac{1}{H}$-variation of $X$ exists in $L^1({\\Omega})$ and is equal to $e_H \\int_0^T|u_s|^H ds$, where $e_H = \\mathbb{E}|B_1|^H$. In the second part of the paper, we establish an integral representation for the fractional Bessel Process $\\|B_t\\|$, where $B_t$ is a $d$-dimensional fractional Brownian motion with Hurst parameter $H < \\frac{1}{2}$. Using a multidimensional version of the result on the $\\frac{1}{H}$-variation of divergence integrals, we prove that if $2dH^2 > 1$, then the divergence integral in the integral representation of the fractional Bessel process has a $\\frac{1}{H}$-variation equals to a multiple of the Lebesgue measure.", "revisions": [ { "version": "v1", "updated": "2015-01-28T04:46:55.000Z" } ], "analyses": { "subjects": [ "60H05", "60H07", "60G18" ], "keywords": [ "hurst parameter", "fractional bessel process", "dimensional fractional brownian motion", "integral representation", "stochastic divergence integrals" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150106986H" } } }