{ "id": "1501.06754", "version": "v1", "published": "2015-01-27T12:01:20.000Z", "updated": "2015-01-27T12:01:20.000Z", "title": "Matching trees for simplicial complexes and homotopy type of devoid complexes of graphs", "authors": [ "Demet Taylan" ], "comment": "19 pages", "categories": [ "math.CO", "math.AT" ], "abstract": "We generalize some homotopy calculation techniques such as splittings and matching trees that are introduced for the computations in the case of the independence complexes of graphs to arbitrary simplicial complexes, and exemplify their efficiency on some simplicial complexes, the devoid complexes of graphs, which are simplicial complexes parametrized by graphs. Additionally, we compute the homotopy type of dominance complexes of chordal graphs.", "revisions": [ { "version": "v1", "updated": "2015-01-27T12:01:20.000Z" } ], "analyses": { "subjects": [ "05C69", "05C70", "55U10" ], "keywords": [ "homotopy type", "devoid complexes", "matching trees", "homotopy calculation techniques", "arbitrary simplicial complexes" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150106754T" } } }