{ "id": "1501.06723", "version": "v1", "published": "2015-01-27T10:17:14.000Z", "updated": "2015-01-27T10:17:14.000Z", "title": "Fixed subgroups are compressed in surface groups", "authors": [ "Qiang Zhang", "Enric Ventura", "Jianchun Wu" ], "categories": [ "math.GR" ], "abstract": "For a compact surface $\\Sigma$ (orientable or not, and with boundary or not) we show that the fixed subgroup, $\\operatorname{Fix} B$, of any family $B$ of endomorphisms of $\\pi_1(\\Sigma)$ is compressed in $\\pi_1(\\Sigma)$ i.e., $\\operatorname{rk}((\\operatorname{Fix} B)\\cap H)\\leq \\operatorname{rk}(H)$ for any subgroup $\\operatorname{Fix} B \\leq H \\leq \\pi_1(\\Sigma)$. On the way, we give a partial positive solution to the inertia conjecture, both for free and for surface groups. We also investigate direct products, $G$, of finitely many free and surface groups, and give a characterization of when $G$ satisfies that $\\operatorname{rk}(\\operatorname{Fix} \\phi) \\leq \\operatorname{rk}(G)$ for every $\\phi \\in Aut(G)$.", "revisions": [ { "version": "v1", "updated": "2015-01-27T10:17:14.000Z" } ], "analyses": { "subjects": [ "20F65", "20F34" ], "keywords": [ "surface groups", "fixed subgroup", "compact surface", "partial positive solution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150106723Z" } } }