{ "id": "1501.06596", "version": "v1", "published": "2015-01-26T21:46:50.000Z", "updated": "2015-01-26T21:46:50.000Z", "title": "Sawtooth models and asymptotic independence in large compositions", "authors": [ "Pierre Tarrago" ], "comment": "32 pages, 4 figures", "categories": [ "math.PR", "math.CO" ], "abstract": "In this paper we improve the probabilistic approach to compositions of Ehrenborg, Levin and Readdy by introducing a simpler but more general probabilistic model. As consequence we get some new estimates on the behavior of a uniform random permutation $\\sigma$ having a fixed descent set. In particular we show that independently of the shape of the descent set, $\\sigma(i)$ and $\\sigma(j)$ become independent when $i-j$ tends to $+\\infty$.", "revisions": [ { "version": "v1", "updated": "2015-01-26T21:46:50.000Z" } ], "analyses": { "keywords": [ "asymptotic independence", "sawtooth models", "large compositions", "uniform random permutation", "general probabilistic model" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150106596T" } } }