{ "id": "1501.06525", "version": "v1", "published": "2015-01-26T18:56:04.000Z", "updated": "2015-01-26T18:56:04.000Z", "title": "A Tauberian theorem for nonexpansive operators and applications to zero-sum stochastic games", "authors": [ "Bruno Ziliotto" ], "categories": [ "math.OC" ], "abstract": "We prove a Tauberian theorem for nonexpansive operators, and we apply it to the model of zero-sum stochastic game. Under mild assumptions, we prove that the value of the lambda-discounted game converges uniformly when lambda goes to 0 if and only if the value of the n-stage game converges uniformly when n goes to infinity. This generalizes the Tauberian theorem of Lehrer and Sorin (1992) to the two-player-zero sum case.", "revisions": [ { "version": "v1", "updated": "2015-01-26T18:56:04.000Z" } ], "analyses": { "subjects": [ "47N10", "91A05", "91A15", "91A20", "91A25" ], "keywords": [ "zero-sum stochastic game", "tauberian theorem", "nonexpansive operators", "applications", "two-player-zero sum case" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150106525Z" } } }