{ "id": "1501.06235", "version": "v1", "published": "2015-01-26T02:19:57.000Z", "updated": "2015-01-26T02:19:57.000Z", "title": "Probabilistic lower bounds on maximal determinants of binary matrices", "authors": [ "Richard P. Brent", "Judy-anne H. Osborn", "Warren D. Smith" ], "comment": "16 pages, 2 tables, 23 references. Shorter version of arXiv:1402.6817v3", "categories": [ "math.CO" ], "abstract": "Let $D(n)$ be the maximal determinant for $n \\times n$ $\\{\\pm 1\\}$-matrices, and ${\\mathcal R}(n) = D(n)/n^{n/2}$ be the ratio of $D(n)$ to the Hadamard upper bound. Using the probabilistic method, we prove new lower bounds on $D(n)$ and ${\\mathcal R}(n)$ in terms of the distance $d$ to the nearest (smaller) Hadamard matrix, defined by $d = n-h$, where $h$ is the order of a Hadamard matrix and $h$ is maximal subject to $h \\le n$. The lower bounds on ${\\mathcal R}(n)$ are \\[ {\\mathcal R}(n) > \\left(\\frac{2}{\\pi e}\\right)^{d/2} \\;\\text{ if }\\; 1 \\le d \\le 3,\\;\\text{ and} \\] \\[{\\mathcal R}(n) > \\left(\\frac{2}{\\pi e}\\right)^{d/2} \\left(1 - d^2\\left(\\frac{\\pi}{2h}\\right)^{1/2}\\right) \\;\\text{ if }\\; d > 3. \\] Since $d^2/h^{1/2} \\to 0$ as $n \\to \\infty$, the latter bound is close to $(\\pi e/2)^{-d/2}$ for large $n$. Previous lower bounds tended to zero as $n \\to \\infty$ with $d$ fixed, except in the cases $d \\in \\{0,1\\}$. For $d \\ge 2$, our bounds are better for all sufficiently large $n$. If the Hadamard conjecture is true, then ${\\mathcal R}(n)$ is bounded below by a positive constant $(\\pi e/2)^{-3/2} > 0.1133$.", "revisions": [ { "version": "v1", "updated": "2015-01-26T02:19:57.000Z" } ], "analyses": { "subjects": [ "05B20", "05D40", "15A15", "15B34" ], "keywords": [ "probabilistic lower bounds", "maximal determinant", "binary matrices", "hadamard matrix", "hadamard upper bound" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150106235B" } } }