{ "id": "1501.06191", "version": "v1", "published": "2015-01-25T18:17:05.000Z", "updated": "2015-01-25T18:17:05.000Z", "title": "Global well-posedness of the dynamic $Φ^4$ model in the plane", "authors": [ "Jean-Christophe Mourrat", "Hendrik Weber" ], "comment": "60 pages", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We show global well-posedness of the dynamic $\\Phi^4$ model in the plane. The model is a non-linear stochastic PDE that can only be interpreted in a \"renormalised\" sense. Solutions take values in suitable weighted Besov spaces of negative regularity.", "revisions": [ { "version": "v1", "updated": "2015-01-25T18:17:05.000Z" } ], "analyses": { "subjects": [ "81T27", "81T40", "60H15", "35K55" ], "keywords": [ "global well-posedness", "non-linear stochastic pde", "suitable weighted besov spaces", "negative regularity" ], "note": { "typesetting": "TeX", "pages": 60, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150106191M" } } }